
1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1

Code Critiquer in C

Nicholas Carber : Regex Support

Conner Cook : AST Support

Brandon Ford : Database Administrator

Emily Huisinga : Frontend

Sage Matt : Frontend

Cade Robison : Test Suite Support

TEAM 34

Iowa State University

and Michigan Tech University

Client

Dr. Diane T. Rover

Advisor

Project Vision
● We serve to help novice C

programmers learn C by creating an

application for students to receive

feedback on their code

● The feedback will consist of

easy-to-understand and relevant

error messages

● Teachers will be able to configure

it for their own course

Critiquer Feedback: On line 34, you are
accessing an out-of-bounds index in array arr

C Critiquer

Critiquer Feedback: On line 34,
you are accessing an

out-of-bounds index in array arr

Conceptual/Visual Sketch

● Students & novice programmers in C

○ Specifically CPR E 288 students

● Professors, teaching assistants, tutors

Who will this affect?

● Antipatterns: Poor solutions to
common programming problems

● Regexes: A sequence of characters
used to find patterns in text

● Abstract Syntax Tree: Tree
representation of the syntactic
structure of the code

Important Terms

● Michigan Tech

○ Work in progress critiquers in other languages

■ Existing code bases reference

■ Existing regular expressions

■ Common antipatterns

Prototype Implementations

MTU
MATLAB
Code
Critiquer

● Upload C files successfully

● Program compiles uploaded code

● Provide proper feedback for at least 5 compile errors

● Provide proper feedback for at least 5 style errors

● Upload test suites to run code against

● Program communicates with a database that stores the C antipatterns

● Program runs through the command line and a GUI

Functional Requirements

UI Requirements

● GUI is simplistic and easy to use

● Feedback understandable for novice programmers

Performance Requirements

● Code analysis process should take no more than a few seconds

● File upload should take no more than a few seconds and have no

loss of data

Non-Functional Requirements

Testing Requirements

● Tested with code from both novice and advanced programmers

Maintainability Requirements

● Database easy to update with new antipatterns

● Follow design and standard from MTU

● Well-documented and easy for another team to pick up

Legal Requirements

● Complete CITI training

● Get exempt status from IRB to use students’ code

Non-Functional Requirements (cont)

Top
Level
System
Sketch Code Critiquer GUI

Student

Upload
Code

Instructor

Upload
Test Suites

Login

Login

Code Critiquer ServerDatabase

Send
Code

Send
Feedback

Get
Antipatterns

System
Design -
Component
Diagram

● Hardware - server to host
application on

● Frameworks - Flask

● Standards:

○ IETF RFC 9110 - HTTP
semantics

○ IEEE 12207-1996:
Software Lifecycle
Processes

○ IEEE 2675-2021: Standard
for Devops

System Design (cont)

● Code analysis tools

○ Abstract Syntax Tree generation

○ XPath generation

● Frontend Development

○ No longer integrating with Canvas

○ React (Javascript) → Flask (Python)

Design Complexity

● File upload

○ Concern: Users could potentially try to upload malicious files.

○ Solution: Run uploaded code in its own environment.

● Error identification

○ Concern: An error we are supposed to detect is not identified

○ Solution: Write thorough unit tests to mitigate possible

oversights

● Users adding custom anti-patterns

○ Concern: Users could add application-breaking antipatterns

○ Solution: Each user has local storage for new antipatterns

Project Plan - Risks & Mitigation

Unit testing

● Each function in each component
should have at least one
associated test

● Frameworks for unit testing:
○ Python: unittest

○ Javascript: Jest

Testing

Integration testing

● Test connection between application and
database

○ Check for any errors

○ Test uploading and changing data

● Test connection between UI and
application

○ Check data transfer

○ Check for errors and error handling

Testing (cont)

System Testing

● Use predefined code examples with
known antipatterns

● Upload code through UI

● Verify critiquer matches expected
results

Acceptance Testing

● Tests should prove

○ Function Requirements

○ Non-Functional Requirements

Testing (cont)

Progress

● Finished planning of the application design

● Developed descriptions for antipatterns

Upcoming Plans

● Create a working console application that critiques C code

● Create and connect a database to the console application

● Create a UI for the website

Conclusion

Instructions for use

For more information about editing slides, please read our FAQs or visit our blog:
https://slidesgo.com/faqs and https://slidesgo.com/slidesgo-school

If you have a free account, in order to use this template, you must credit Slidesgo in your final presentation. Please refer
to the next slide to read the instructions for premium users.

As a Free user, you are allowed to:

- Modify this template.
- Use it for both personal and commercial projects.

You are not allowed to:

- Sublicense, sell or rent any of Slidesgo Content (or a modified version of Slidesgo Content).
- Distribute Slidesgo Content unless it has been expressly authorized by Slidesgo.
- Include Slidesgo Content in an online or offline database or file.
- Offer Slidesgo templates (or modified versions of Slidesgo templates) for download.
- Acquire the copyright of Slidesgo Content.

http://bit.ly/33VAFh3
http://bit.ly/30B07Gq
http://bit.ly/2PfT4lq

